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Abstract

There are situations in which an agent should receive rewards only after having
accomplished a series of previous tasks, that is, rewards are non-Markovian. One
natural and quite general way to represent history-dependent rewards is via a Mealy
machine, a finite state automaton that produces output sequences from input se-
quences. In our formal setting, we consider a Markov decision process (MDP)
that models the dynamics of the environment in which the agent evolves and a
Mealy machine synchronized with this MDP to formalize the non-Markovian re-
ward function. While the MDP is known by the agent, the reward function is
unknown to the agent and must be learned.

Our approach to overcome this challenge is to use Angluin’s L* active learning
algorithm to learn a Mealy machine representing the underlying non-Markovian
reward machine (MRM). Formal methods are used to determine the optimal strat-
egy for answering so-called membership queries posed by L*.

Moreover, we prove that the expected reward achieved will eventually be at
least as much as a given, reasonable value provided by a domain expert. We eval-
uate our framework on three problems. The results show that using L* to learn an
MRM in a non-Markovian reward decision process is effective.

1 INTRODUCTION

Traditionally, a Markov Decision Process (MDP) models the probability of going to a
state s’ from the current state s while taking a given action a together with an immediate
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Figure 1: Flow diagram of the proposed framework for learning and exploiting Mealy
reward machines (MRMs).
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reward that is received while performing a from s. This immediate reward is defined
regardless of the history of states traversed in the past. Such immediate rewards thus
have the Markovian property. But many situations require the reward to depend on
the history of states visited so far. A reward may depend on the particular sequence of
(sub)tasks that has been completed. For instance, when a nuclear power plant is shut
down in an emergency, there is a specific sequence of operations to follow to avoid a
disaster; or in legal matters, there are procedures to follow which require documents
to be submitted in a particular order. So, many tasks agents could face need us to
reason about rewards that depend on some history, not only the immediate situation
(non-Markovian).

Learning and maintaining non-Markovian reward functions is useful for several
reasons: (i) Many tasks are described intuitively as a sequence of sub-tasks or mile-
stones, each with their own reward (cf. the related work below) (ii) Possibly, not all
relevant features are available in state descriptions, or states are partially observable,
making it necessary to visit several states before (more) accurate rewards can be dis-
pensed [3, [17]. (iii) Automata (reward machines) are useful for modeling desirable
and undesirable situations facilitating tracking and predicting beneficial or detrimental
situations [2 19, [11]]. Actually, in practice, it can be argued that non-Markovian tasks
are more the norm than Markovian ones.

In this work, we assume that the states and the transition function are known, but
the reward function is unknown. It is also assumed that the reward behavior of the
environment is possibly non-Markovian. The aim is to learn a model of the non-
Markovian reward function and use it whenever possible, even if it is not yet known
to be a complete model. We describe an active learning algorithm to automatically
learn non-Markovian reward models by executing ‘experiments’ on the system. In our
case, a non-Markovian reward model is represented as a Mealy machine; a determinis-



tic finite automaton (DFA) that produces output sequences that are rewards, from input
sequences that are (state, action) observations. We refer to such finite state reward
models as Mealy Reward Machines (MRM). Our framework (Fig. [l is considered to
be for online systems, alternating between a learning phase and an exploitation phase.
The learning phase is based on Angluin’s L* active learning algorithm [4] to learn fi-
nite automata. It is an active learning algorithm because it poses a series of queries
to a teacher who must provide answers to an agent performing experiments on/in the
system being learnt. In our case, the learner is an agent in an MDP and the teacher
is the environment. The queries consist of sequences of observations and the answers
are the corresponding sequences of rewards that the agent experiences. In this setting,
answering membership queries is already a challenge. An observations is a function
of an action and the successor state. Encountering a particular observation sequence
when actions are stochastic and observations have the functional dependencies just
mentioned is non-trivial.

When L* has enough input/output data, it can build a corresponding MRM as an
hypothesis of the true underlying MRM. In our framework, whenever an hypothesis
is inferred, the agent enters the exploitation phase. The agent then acts to maximize
rewards until it encounters a sequence of observations and rewards which contradicts
the current hypothesis. The agent then goes back to learning with L*.

Due to the stochasticity of actions in MDPs, a challenge is for the agent to experi-
ence exactly the observation sequence posed by L* as a query, and to do so efficiently.
We rely on known formal methods to compute the sequence of actions the agent should
execute to encounter the observation sequence with highest probability or least ex-
pected number of actions. Another important aspect of the framework is that, given an
(hypothesized) MRM, a synchronized product of the MRM and the MDP is induced
so that an immediate reward function is available from the induced product MDP. This
means that existing (Markovian) MDP planning or reinforcement learning techniques
can be employed in the exploitation phase. We use model-based optimization methods
as developed by [6].

Furthermore, in our framework, a special reset action is introduced at the time the
synchronized product is formed. This action is available at every state of the product
MDP such that it takes the system to its initial state. In this way, the product MDP is
strongly connected and we can then prove some useful properties of our framework.
The engineer needs not be concerned with the reset action when modeling the system,
that is, the MDP of the system does not have to mention this action. However, the
engineer should keep in mind that the framework is best used for systems which can
actually be reset at any time. Another useful feature of our framework is that it allows
a domain expert to provide a value that the system should be able to achieve in the
long-run if it follows the optimal strategy. This ‘expert value’ needs not be the optimal
expected value, but some smaller value that the system owner wants a guarantee for.

Our contribution is to show how a non-Markovian reward function for a MDP can
be actively learnt and exploited to play optimally according to this non-Markovian
reward function in the MDP. We provide a framework for completely and correctly
learning the underlying reward function with guarantees under mild assumptions. To
the best of our knowledge, this is the first work which employs traditional automata
inference for learning a non-Markovian reward model in an MDP setting.



Related Work There has been a surge of interest in non-Markovian reward functions
recently, with most papers on the topic being publications since 2017. But unlike our
paper, most of those papers are not concerned with learning non-Markovian reward
functions.

An early publication that deserves to be mentioned is [5]. In this paper, the authors
propose to encode non-Markovian rewards by assigning values using temporal logic
formulae. The reward for being in a state is then the value associated with a formula
that is true in that state. They were the first to abbreviate the class of MDP with non-
Markovian reward as decision processes with non-Markovian reward or NMRDP for
short. A decade later, [26] presented the Non-Markovian Reward Decision Process
Planner: a software platform for the development and experimentation of methods for
decision-theoretic planning with non-Markovian rewards. In both the cases above, the
non-Markovian reward functions is given and does not need to be learned.

A closely related and possibly overlapping research area is the use of temporal
logic (especially linear temporal logic (LTL)), for specifying tasks in Reinforcement
Learning (RL) [2[15} (16, 9} (11} [12].

Building on recent progress in temporal logics over finite traces (LTL), [7] adopt
linear dynamic logic on finite traces (LDLy; an extension of LTLy) for specifying non-
Markovian rewards, and provide an automaton construction algorithm for building a
Markovian model. The approach is claimed to offer strong minimality and composi-
tionality guarantees. In those works, the non-Markovian reward function is given and
does not have to be learned as in our setting.

In another paper [8], the authors are concerned with both the specification and
effective exploitation of non-Markovian rewards in the context of MDPs. They specify
non-Markovian reward-worthy behavior in LTL. These behaviors are then translated to
corresponding deterministic finite state automata whose accepting conditions signify
satisfaction of the reward-worthy behavior. These automata accepting conditions form
the basis of Markovian rewards by taking the product of the MDP and the automaton
(as we do).

None of the research mentioned above is concerned with learning non-Markovian
reward functions. However, in the work of [17], an agent incrementally learns a reward
machine (RM) in a partially observable MDP (POMDP). They use a set of traces as
data to solve an optimization problem. “If at some point [the RM] is found to make
incorrect predictions, additional traces are added to the training set and a new RM is
learned.” Their approach is also active learning: If on any step, there is evidence that
the current RM might not be the best one, their approach will attempt to find a new one.
One strength of their method is that the the reward machine is constructed over a set
of propositions, where propositions can be combined to represent transition/rewarding
conditions in the machine. Currently, our approach can take only single observations
as transition/rewarding conditions. However, they do not consider the possibility to
compute optimal strategies using model-checking techniques.

Moreover, our approach is different to that of [L7] in that ours agents are guided by
the L* algorithm to answer exactly the queries required to find the underlying reward
machine. The approach of [17] does not have this guidance and interaction with the
learning algorithm; traces for learning are collected by random exploration in their
approach.



Next, we cover the necessary formal concepts and notations. In Section[3] we define
our Mealy Reward Machine (MRM). Section 4] explains how an agent can infer/learn
an underlying MRM and present one method for exploiting a learnt MRM. We discuss
the guarantees offered by the framework in Section[5] Section[6|reports on experiments
involving learning and exploiting MRMs; we consider three scenarios. The last section
concludes this paper and points to future research directions.

2 FORMAL PRELIMINARIES

We review Markov Decision Processes (MDPs) and Angluin-style learning of Mealy
machines.
An (immediate-reward) MDP is a tuple (S,A,T,R,so), where

e S is a finite set of states,
e A is a finite set of actions,

e T:SxAxS— [0,1] is the state transition function such that 7'(s,a,s’) is the
probability that action a causes a system transition from state s to s,

e R:A xS+ Ris the reward function such that R(a,s) is the immediate rewards
for performing action « in state s, and

e 50 the initial state the system is in.

A non-rewarding MDP (ntMDP) is a tuple (S, A, T, so) without a reward function.

The following description is from [28]]. [4]] showed that finite automata can be
learned using the so-called membership and equivalence queries. Her approach views
the learning process as a game between a minimally adequate teacher (MAT) and a
learner who wants to discover the automaton. In this framework, the learner has to
infer the input/output behavior of an unknown Mealy machine by asking queries to a
teacher. The MAT knows the Mealy machine M. Initially, the learner only knows the
inputs I and outputs O of M. The task of the learner is to learn M through two types
of queries: (1) With a membership query (MQ), the learner asks what the output is
in response to an input sequence 6 € I*. The teacher answers with output sequence
M(G). (2) With an equivalence query (EQ), the learner asks whether a hypothesized
Mealy machine # with inputs I and outputs O is correct, that is, whether 4 and M
are equivalent (Vo € I*, M (o) = #(0)). The teacher answers yes if this is the case.
Otherwise she answers no and supplies a counter-example ' € I* that distinguishes
H and M (i.e., such that M (c) # H(c")).

The L* algorithm incrementally constructs an observation table with entries being
elements from O. Two crucial properties of the observation table allow for the con-
struction of a Mealy machine [28]]: closedness and consistency. We call a closed and
consistent observation table complete.

[4] proved that her L* algorithm is able to learn a finite state machine (incl. a Mealy
machine) by asking a polynomial number of membership and equivalence queries
(polynomial in the size of the corresponding minimal Mealy machine equivalent to



‘ t]80
}g m € e|80
1180 :

: m| 10

2|70
1195

(a) The treasure-map world. Blank
cells contain observation nul/l by de- (b) A Mealy reward machine. Self-loops are not
fault. shown.

Figure 2: The treasure-map scenario.

M). Let |I] be the size of the input alphabet (observations), n be the total number
of states in the target Mealy machine, and m be the maximum length of the counter-
example provided by the MAT for learning the machine. Then the correct machine
can be produced by asking maximum O(|I|* + |I|mn?*) queries (using, e.g., the Ly "
algorithm) [25]).

In an ideal (theoretical) setting, the agent (learner) would ask a teacher whether
H is correct (equivalence query), but in practice, this is typically not possible [28].
“Equivalence query can be approximated using a conformance testing (CT) tool [20]
via a finite number of test queries (TQs). A test query asks for the response of the
[system under learning] to an input sequence, similar to a membership query. If one
of the test queries exhibits a counter-example then the answer to the equivalence query
is no, otherwise the answer is yes” [28]]. A finite and complete conformance test suite
does exist if we assume a bound on the number of states of a Mealy machine [20].

Our present framework, however, does not rely on conformance testing by perform-
ing a particular suite of TQs. Rather, if it is found that the current hypothesis would
under-perform compared to what a domain expert expects, the framework executes a
weaker kind of conformance testing: the agent performs actions uniformly at random
until a counter-example is found.

3 MODELING NON-MARKOVIAN REWARDS

3.1 Running Example

Consider, as a running example (Fig. [2), an agent who might stumble upon a person
with a map (m) for a hidden treasure (t) and some instruction on how to retrieve the
treasure. The instructions imply that the agent purchase some specialized equipment



(e) before going to the cave marked on the treasure map. Alternatively, the agent may
hire a guide (g) who already has the necessary equipment. If the agent is lucky enough
to find some treasure, the agent must sell it at the local jewelry trader (j). The agent can
then restock its equipment or re-hire a guide, get some more treasure, sell it and so on.
Unfortunately, the instructions are written in a coded language which the agent cannot
read. However, the agent recognizes that the map is about a hidden treasure, and thus
spurs the agent on to start treasure hunting to experience rewards and learn the missing
information.

Besides the four movement actions, the agent can also buy, sell and collect. In
the next subsection, we define a labeling function which takes an action and a state,
and maps to an observation. For this example, the labeling function has the following
effect. If the agent is in the state containing m, e or g and the does the buy action, then
the agent observes m, e respectively g. If the agent is in the state containing t, and does
the collect action, then the agent observes t. If the agent is in the state containing j, and
does the sell action, then the agent observes j. In all other cases, the agent observes
null.

After receiving the treasure map, the agent might not find a guide or equipment. In
general, an agent might not finish a task or finish only one version of a task or subtask.
In this world, the agent can reset its situation at any time; it can receive a map again
and explore various trajectories in order to learn the entire task with all its variations.

The reward behavior in this scenario is naturally modeled as an automaton where
the agent receives a particular reward given a particular sequence of observations.
There is presumably higher value in purchasing equipment for treasure hunting only
after coming across a treasure map and thus deciding to look for a treasure. There is
more value in being at the treasure with the right equipment than with no equipment,
etc.

We shall interpret features of interest as observations: (obtaining) a map, (purchas-
ing) equipment, (being at) a treasure, (being at) a jewelry trader, for example. Hence,
for a particular sequence of input observations, the Mealy machine outputs a corre-
sponding sequence of rewards. If the agent tracks its observation history, and if the
agent has a correct automaton model, then it knows which reward to expect (the last
symbol in the output) for its observation history as input. Figure[2adepicts the scenario
in two dimensions. The underlying Mealy machine could be represented graphically
as in Figure It takes observations as inputs and supplies the relevant outputs as
rewards. For instance, if the agent sees m, (map), then j, then t, then the agent will
receive rewards 10, then 0 and then 0. And if it sees the sequence m-g-t-], then it will
receive the reward sequence 10-70-95 - 180.

We define intermediate states as states that do not signify a significant progress to-
wards completion of a task. In Figure [2a] all blank cells represent intermediate states.
We assume that there is a default reward/cost an agent gets for entering intermediate
states. This default reward/cost is fixed and denoted c in general discussions. Similarly,
the special null observation (null) is observed in intermediate states. An agent might
or might not be designed to recognize intermediate states. If the agent could not distin-
guish intermediate states from ‘significant’ states, then null would be treated exactly
like all other observations and it would have to learn transitions for nul/l observations
(or worse, for all observations associated with intermediate states). If the agent can



distinguish intermediate states from ‘significant’ states (as assumed in this work), then
we can design methods to take advantage of this background knowledge.

3.2 Mealy Reward Machines

We introduce the Mealy reward machine to model non-Markovian rewards. These
machines take a set Z of observations representing high-level features that the agent
can detect (equivalent to the set of input symbols for L*). A labeling function A :
A x S+ ZW{null} maps action-state pairs onto observations; S is the set of nrMDP
states and Z is a set of observations. The meaning of A(a,s) = z is that z is observed
in state s reached via action a. The null observation always causes the trivial transition
in the machine (i.e. self-loop) and produced a default reward denoted c¢. For Mealy
reward machines, the output symbols for L* are equated with rewards in R.

Definition 3.1 (Mealy Reward Machine). Given a set of states S, a set of actions A and
a labeling function A, a Mealy Reward Machine (MRM) is a tuple (U,uy,Z,d,,8,,c),
where

o U is a finite set of MRM nodes,
e uy € U is the start node,
o ZW{null} is a set of observations,

e 3, :U X Z— U is the transition function, such that 8,(u;,Ma,s)) = u; fora € A
and s € S, specifically, &, (u;,null) = u;,

e 3, : U X Z + R is the reward-output function, such that 8,(u;,A(a,s)) =1 for
¥ €R,a€Aands €S, specifically, 8,(u;,null) = c.

We may write SX and Sf{ to emphasize that the functions are associated with MRM R.

A Markov Decision Process with a Mealy reward machine is thus a non-Markovian
reward decision process (NMRDP). In the diagrams of MRMs, an edge from node u;
to node u; labeled z | r denotes that 8, (u;,z) = u; and 8,(u;,z) =r.

In the following definitions, lets; € S, a; €A, z; € Z, and r; € R.

e interaction trace of length k in an MDP represents an agent’s (recent) interactions
with the environment. It has the form soagrisiairy - - - sx_1ax_1ry and is denoted
Ginter- That is, if an agent performs an action at time 7 in a state at time ¢, then it
reaches the next state at time ¢ + 1 where/when it receives a reward.

e An observation trace is extracted from an interaction trace (employing a labeling
function) and is taken as input to an MRM. It has the form zjz»---z; and is
denoted ©;.

e A reward trace is either extracted from an interaction trace or is given as output
from an MRM. It has the form rr; - - - r; and is denoted G,.

e A history has the form spagsiaj - - - s; and is denoted G,.



Given a history 6, we extend 9, to take histories by defining 3, (u;, 6;,) inductively

as

8y (ui, Mao, s1)) - 8, (8u(ui, Mao, 1)), arsz -~ sc).

Finally, we extend 9, to take histories by defining & (u;,6),) inductively as
Sr(u,-,k(ao,sl )) . 8;(8u(ui,k(ao,s1 )),a]SQ . -Sk).

&! explains how an MRM assigns rewards to a history in an MDP.

3.3 Expected Value of a Strategy under an MRM

A (deterministic) strategy to play in a ntMDP M = (S,A, T, so) is a function 7 : $* — A
that associates to all sequences of states 6 € S* of M the action 7(G) to play.

In this version of the framework, the agent tries to maximize mean payoff, defined
as MP(c,) = + ¥ | ri., where r; is the reward received at step i. Let MP(R) be
the mean payoff of an infinite reward trace generated by reward model &. Then the
ex}gected mean payoff under strategy 7 played in MDP M from state s is denoted as
EN*(MP(R)).

Being able to produce a traditional, immediate reward MDP from a non-Markovian
rewards decision process is clearly beneficial: One can then apply all the methods de-
veloped for MDPs to the underlying NMRDP, whether to find optimal or approximate
solutions. The following definition is the standard way to produce an MDP from a
non-reward MDP (nrMDP) and a deterministic finite automaton.

Definition 3.2 (Synchronized Product). Given an nrMDP M = (S,A,T,s¢), a labeling
Sunction & : S — ZW{null} and an MRM R = (U, uy,Z,9,,9,), the synchronized prod-
uct of M and R_under \ is defined as an (immediate reward) MDP P = M ®) R =
(S®,A%, T R® s), where

e S¥=8SxU,
o A=A,

/ S /
° T®((S,u),a,(s/,u’)) :{ T(sv(;las) Zze;‘}?:e('uax(aas))

o R?(a,(s,u)) =38,(u,Ma,s)),

° s?f = (so0,up)

Due to MRMs having deterministic transitions (8, and &}, are functions), we have
that the histories in M and P are in bijection. This is stated formally in the following
proposition. Let $(M) and $H(P) denote all histories that can be generated from M,
resp. P.



Proposition 3.1. Ler B: (M) — $(P) be defined for 65, = spapsia; - - - s as

B(op) = (s0,u0)
ao(s1,8,(uo, Mao, s1))
a1 (52,84 (8 (uo, Mao,s1)), Mar,s2)))

a1 (sx, Last (8, (uo, n))),

As a consequence, given a strategy T for M, we can define a strategy n® for P as
follows. For all 6;, € (M), n°(B(c})) = 7(cy).

Corollary 3.1. The strategies in M and P are in bijection.

The following proposition states that the expected value of an nrtMDP with an
MRM is equal to the expected value of their product under the same strategy.

Proposition 3.2. Given an nrMDP M = (S,A,T,so), a labeling function A : S — Z ¥
{null}, an MRM R_= (U, uy,Z,8,,8,), P =M @ R, for all strategies T for M and %
in bijection, we have that

ENT(MP(R)) =BT, (MP(R)).

(s0,t0

3.4 Adding a Reset Action

We make the important assumption that the environment and the agent’s state can be
reset. Resetting also sets the underlying and hypothesized MRMs to their start nodes.
Having a reset action available means that the underlying domain need not be strongly
connected, that is, there needs not exists a path between all pairs of states. Having
the option to reset at any time allows one to learn in terms of episodes: either an
episode ends naturally (when the maximum episode length is reached or when the task
is achieved to satisfaction) or the episode is cut short by resetting the system due to lack
of progress. Of course, the agent retains the hypothesized MRM learnt so far. Resetting
a system is not always feasible. We are, however, interested in domains where an agent
can be placed in a position to continue learning or repeat its task.

The results discussed in the next section rely on the implicit presence of a special
reset action . Instead of modifying the learning procedure, this amounts to adding
«~ when defining sybchronized products ( ®; ).

Formally, this is done as follows. Let so and u( be the unique starting state of
MDP M and the unique starting node of MRM X, respectively. Then M @y R is de-
fined as before, and with « available at every product state (s,u) such that T'((s,u),
,(s0,u0)) = 1. By adding \ in this way, the products become strongly connected.

Definition 3.3 (Synchronized Product with Homing). Given an nrMDP M = (S,A, T, so),
alabeling function A : S +— ZW{null}, a reset cost ¢ ~ and an MRM R = (U, uq,Z,d,,d,),
we define the homing/‘resetable’ synchronized product of M and R_under A as an (im-
mediate reward) MDP P = M @7 R = (§97 497 T ,R®ﬂ,sg§ﬂ ), where

10



e S¥T =SxU

o A% =AW {~}
T(s,a,s') ifa#~ A =38,(u,Ma,s))
o T (s () = O ifade hd # Suuh(as)
1 ifa=~NA(s",u') = (s0,u0)
o B = { SUHEI TLED
. s(?n = (s0,up)

Note that adding the reset action does not change the result of Proposition
The following proposition states that the expected value of an nrtMDP with an
MRM is equal to the expected value of their product under the same strategy.

Corollary 3.2. Given an nrMDP M = (S,A,T,sy), a labeling function A : S — Z
{null}, an MRM R = (U,u0,Z,8,,8,), P =M @ R, for all strategies & for M and
n®" in bijection, we have that

EMF (M P(R)) =E™

(s0,t0)

(MPR®™)).

A strategy T : S* — A is memoryless if ¥61,6, € S* such that last (o) = last(02),
then 1(G1) = ©(03), that is, if the action played by 7 for sequence ¢ depends only on
the last state in 6. Because memoryless strategies are sufficient to play optimally in

order to maximize Eﬁgio) (MP(R®"")) in immediate reward MDPs, and together with
Corollary 3.2} we conclude that we can play optimally in M under & in a finite memory
strategy 7T* (finite in the memory required for & ; but memoryless if viewed as P =
M ®f R). Strategy ®* can be computed with, for instance, the STORM probabilistic
model checking software packagem In this work, we use STORM to compute t* for
M ey H (product of the nrMDP and the hypothesis MRM).

4 THE FRAMEWORK

4.1 Flow of Operation
A high-level description of the process follows (recall Fig. [)).

1. Play a finite number of episodes to answer membership queries by extracting
reward traces from the appropriate interaction traces until the observation table
(OT) is complete;

2. As soon as OT becomes complete, construct new hypothesized MRM # from
OT and compute the optimal strategy 77, for M @y H with value V(n,,) em-
ploying STORM;

ISTORM can be found at http://www.stormchecker.org

11
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3. If V(n’,;[) is less than the value provided by a domain expert, then we know that
H must be wrong, in which case, we seek an interaction trace which is a counter
example to # by playing actions uniformly at random (strategy T,,);

4. Else, if V(n*}[) is greater than or equals the value provided by the domain expert,
then repeatedly execute actions using 77, ;

5. Whenever a counter-example to H is discovered (experienced), stop exploitation
and go to step 1 (the learning phase).

Algorithm[T]is the high-level algorithm implementing these steps.

In the algorithm, “alive” implies that there is no specific stopping criterion. In prac-
tice, the user of the system/agent will specify when the system/agent should stop col-
lecting rewards. Step 1 corresponds to procedures getMQ(OT), getExperience(o;,so)
and resolveMQ(OT, 6,,G,) (the latter accommodates the observed input (c;) / output
(o)) behavior as defined by the L* algorithm). In Step 2, procedure buildRewardMa-
chine(OT) constructs the new hypothesized MRM #. Procedures getMQ(), resolve-
MQ() and addCounterExample() are part of the L* algorithm and are assume to be pre-
defined. In our implementation, Plan(P) is performed by the STORM model-checker.

4.2 Answering Membership Queries Efficiently

Execution of L* requires answers to membership queries: given a sequence of observa-
tions G, we need to discover what the associated reward 6, = #(0;) is. Because the
transitions in the MDP are stochastic, there is in general no sequence of actions a that is
guaranteed to force the occurrence of 6,. Forcing the sequence G, is a planning prob-
lem. Procedure getExperience(o;,so) implements this in the algorithm formalizing the
framework. Here we distinguish two natural variants of this planning problem.

The first variant, called MAX asks to synthesize the strategy my4x that produces
(from the initial state of the MDP) the sequence G, with the highest probability o.. Let
Tyax be the optimal strategy for MAX. Then we can play Ty 4x repeatedly, and reset
the system as soon as the prefix of observations is not compatible with 6,. Each such
try will succeed with probability o, and so by repeating trials, we are guaranteed to
observe G, with probability 1 — (1 — )" after n trials, and so with probability one in
the long run. To synthesize the strategy Ty4x, we construct a MDP M’ from M and o,
in which states are pairs (s,i) where s is a state of M and i is an index that tracks the
prefix of the sequence G, that has been observed so far. MDP M’ is reset as soon as the
observed prefix is not compatible with 6,. The goal is to reach any state (s,k) where
k is the length of the sequence of observations 6,. The model-checking tool STORM
can then be used to synthesized, in polynomial time, the strategy that maximizes the
probability o of reaching this set of states.

The second variant, called MIN is more refined and asks to synthesize the strategy
TN that minimize the expected number of steps N that are needed (including resets
of M) in order to observe G,. This strategy myy is played and the sequence of obser-
vations G, is observed after an expected number of N steps. Again, we use STORM to
compute this strategy in polynomial time. It can be computed as the strategy that mini-
mizes the expected cost (each step costs 1) to reach a state of the form (s,k) where k is
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Algorithm 1 Approximate Active Learning

Initialize observation table OT
while alive do
if OT is not complete then
G, + getMQ(OT)
o, + getExperience(G;, o)
resolveMQ(OT, 6;,G,)
else
H <+ buildRewardMachine(OT)
P= <S®,A®,T®,R®7 (s0,u0)) (—M@kf\ H
T, < Plan(P)
Scur <= 805 Ucur < UQ
if V(1)) < Vexper then
repeat
a < random(A®)
(snxhunxt) ~ T((Scuraucur)7a> )
r< R® (a, (snxta Mcur))
Update Gyer With (a, s, 7)
scur (7 Snxt; ucur <7 M}’lxt
until G, is a counter example to H
else
repeat
reset environment and refresh Gjy e,
Scur < 805 Ucur < UQ
steps =0
while steps < E pisodeLength do
increment steps by 1
a<— n;[(scurv ucur)
(Snxta unxt) ~ T((Scuraucur)aaa )
r < R®(a, (Snxt, Ucur))
Update Gjyer With (a, sy, 7)
Scur = Snxt> Ucur <= Unxt
end while
until 6;,,., is a counter example to H
end if
G, « extractObsTrace(Gjyrer)
G, < extractRewTrace(Ginser)
addCounterExample(OT,c;,G,)
end if
end while

the length of the sequence of observations 6, in the MDP M’ described in the previous
paragraph.
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S FORMAL GUARANTEES OF THE LEARNING
FRAMEWORK

Our framework provably offers two guarantees that can be stated as follows: (1) When
playing 77 online, with probability 1: either we obtain V(1}) in the long-run or we
observe a counter-example to #, (2) If the expert’s value, Vexpert 18 less than the long-
run value of playing the optimal strategy (of the underlying reward machine X)), then
with probability 1, we learn hypothesis # such that V(n;{) > Vexpers. In the rest of this
section, we prove these two claims.

5.1 Consequence of playing n}‘{ on M®;" R

We introduce a special counter-example state CE for the theory in this section. CE
is entered when a counter-example is encountered. To describe the effect of playing
m}, online, we need to work in the state-space (S x UX x U YU {CE} of process
MR, H (defined below) and to study the associated Markov chain when Ty is
used. Intuitively, we use s and u,/ in (s,u ,us) to determine what action is played by
7, The reward observed online from K _ and predicted by H are compared: either the
rewards for ug and uy, in the two RMs agree and the RMs are updated accordingly, or
we go to a special counter-example state CE.

Formally, the transition probabilities between states in this space are defined as
follows. Leta € A\ {~\} and z = A(a,s') then:

57 (ug ,2) = 87 (g, 2)

/ : R o
T((s,um g, (5 g i) = { T @S) A0 B lem,2) =uig
8, (ugy,2) = uly
0 otherwise.
T(<Sv MK7uﬂ>aa7CE) = Z T(S7aasl)

187 (g 2) 787 (19 2)

1 if (s uly il ) = (so,ugo,terg)
T PN /i /‘ _ P :K7 9 yURO U0
({5, 1900, 0, (5" g ) 0 otherwise.

Additionally, CE is a sink (never left when entered). Reaching CE occurs when a
counter-example to the equivalence between K and #H has been discovered online. If
h is the history that reaches CE, then & can be used to restart L* and compute a new
hypothesis H' as it contains a sequence of observations on which & and # disagree.

Definition 5.1 (BSCC [6]]). Let M = (S,A,T,so) be an nrMDP and C C S. Let P(s,s’)
be the probability of reaching state s' from state s (via a sequence of actions). C is
strongly connected if for every pair of states v,w € C, the states v and w are mutually
reachable, i.e., P(v,w) > 0 and P(w,v) > 0. A strongly connected component (SCC) of
M is a maximally strongly connected set of states. That is, C is an SCC if C is strongly
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connected and C is not contained in another strongly connected set of states D C S
with C # D. A bottom SCC (BSCC) of M is an SCC B from which no state outside B is
reachable, i.e., for each state b € B it holds that ¥y P(b,b') = 1.

Theorem 5.1. When playing T, online, with probability 1: either V(n,,) is obtained
or a counter-example to H is found.

Proof To prove this theorem, we show that if no counter-example is found when play-
ing 707 online (playing on M @3 R, H), then the long run mean-payoff of the observed
outcome is V(7},) with probability one.

First, we note that the MDP M ®;™ # on which we compute T, is strongly con-
nected. As a consequence, all the states of the MDP have the same optimal mean-payoff
value which is V(n;{). It also means that all the states in the associated Markov chain,
noted M @5 #H(m}, ), have the same value V(m},). In turn this implies that all the
BSCC of this Markov chain have the same value V(n}). From that, we deduce that the
mean-payoff obtained by a random walk in those BSCCs has a value equal to V (17,
with probability one (see e.g. [24]).

Next, we are interested in the expected value obtained when playing 77, on M @y
R, H conditional to the fact that no counter-example is encountered, that is, while CE
is not reached. We claim that the behavior of n;[ on M ®;" R, H is then exactly the
same as in M ®; . This is a consequence of the following property: there are only
two kinds of BSCCs in M @5 R, # (n},): (i) {CE} and (ii) BSCCs B not containing
CE. When in B, R and # fully agree in the sense that, for all (s,ug,us) € B, as
CE cannot be reached (otherwise B would not be a BSCC), the action chosen by n*,]‘{
triggers the same reward from ® and #. So we conclude that the expected reward in
B is as predicted by 4 and is equal to V(n}‘{). Hence, again the value observed will be
V() with probability 1 and the theorem follows. |

5.2 Leveraging off Expert Knowledge

Now we show how one can take advantage of the knowledge a domain expert has
about what value can be expected when playing optimally in the domain. This idea is
exploited in Step 3 of the description of the flow of our algorithm (Sect. .T).

To this end, we first establish how we can find counter-examples systematically
using random exploration. For that, we define the strategy 7, which plays uniformly at
random all actions in AU {1}, that is,

T Sx UR x UM — AAU{A))
such that 7, ((s,ug ,usy))(a) = 1/(JA] + I)EI and prove the following result.

Lemma 5.1. While playing w, online, a counter-example is found (with probability
one) if and only if R_and H are not equivalent.

Proof First, we note that the Markov chain M ®;" R, # (m,) is composed of two
strongly connected components: C; = {CE} and C; that contains all the other states.

2A(X) is all probability distributions over set X.
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We also note that C; = {CE} is reachable in this Markov chain iff & and # are not
equivalent. So, when playing &, on M ®;" R, H, two mutually exclusive scenarios are
possible. First, ® and % are not equivalent. Then, there are transitions from C, to Cy,
and C is the only BSCC of the Markov chain. As a consequence, the execution of T,
ends in C; with probability 1. Second, R and # are equivalent. Then, there are no
transitions from C; to C, and C; is the only reachable BSCC of the Markov chain and
no counter-examples exist. |

Suppose that a domain expert can provide us with a value Veyy.; which is realistic
in the following sense: Veypes is below the frue optimal value achievable on M ®{\ R.
Then the following theorem holds.

Theorem 5.2. If Ve is less than or equal to the optimal value V(Tc’i;{) of M®;" R,
then with probability 1, a hypothesis H will be learned such that V(1) > Vexperr.

Proof Note that if V(7 ;) < Vexperr, then it must be the case that the hypothesized MRM
H does not model the underlying MRM R _(i.e., they are not equivalent). Furthermore,
if V(1) < Vexperr, then our algorithm plays the uniform random strategy 7, and by
Lemma a counter-example is found with probability 1 which triggers L* to be
restarted in order to obtain a new hypothesis #’. Now, we note that the scenario above
can happen only a number of times bounded by the number of states in &, because
the L* algorithm is guaranteed to learn X after a number of equivalence queries that
is at most equal to the number of states in &_[4]]. So, either we find a hypothesis that
predicts a better value than V., or we end up with an hypothesis # which is correct
and so equivalent to R, implying that V(TC;{) = V(n;() > Viexpers. We conclude that our
algorithm is guaranteed to obtain online a mean-payoff value which is at least Viypers
with probability 1. |

6 EXPERIMENTAL EVALUATION

Our online active-learning algorithm was implemented, and evaluated on three small
problem domainsE] The three problems are also evaluated w.r.t. a baseline based on
neural networks. In this section, we describe the baseline, and then in the following
three subsections, we describe the problem domain, describe in more detail the exper-
iment setup for the particular problem and present the results. However, some aspects
of the experiments are common to all our cases and discussed immediately:

For convenience, we refer to our framework as ARM (for Angluin Reward Ma-
chine) and the baseline as DQN (for Deep Q-function Network). When using ARM,
the number of actions allowed per trial includes actions required for answering mem-
bership queries and for searching for counter-examples. Rewards received during ex-
ploration, learning, exploitation are all considered. In all domains, the agent can move
north, east, west and south, one cell per action. To add stochasticity to the transition
function, the agent is made to get stuck 5% of the time when executing an action. We
measure the cumulative rewards gained (Return) per episode. Procedure getExperience

3For the L* algorithm, we used a Python implementation provided by Georges Bossert
(https://github.com/gbossert/pylstar).
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is set to use mode MIN (cf. Sect.[d.2)) in all experiments. Episode length, total number
of steps (actions) and number of trials performed are domain dependent; they will be
mentioned for each domain. To achieve similar total experiment times (per problem),
episode lengths of DQN were increased.

6.1 Deep Q-learning Baseline

We implemented a Deep Q-learning network agent (DQN) [22]]. To improve the sta-
bility and the convergence speed of the learning, we augmented the agent with two
standard techniques: experience replay [22] and double-q function [14].

Let fo: S — R4l be a standard deep Q function, receiving as input a state rep-
resentation and returning as output the real vector of Q-values for each single action.
The state representation space S depends on the particular domain. For the domains
used in this paper, it is the set of (x,y) coordinates of the grid. Since ‘regular’ deep
Q-learning algorithms assume a Markovian setting, a naive application of deep rein-
forcement learning techniques does not provide us with a fair competitor. Therefore,
we enhanced our DQN baseline with the ability to make decisions based on observation
history: In particular, we extended the standard deep Q network in three ways.

First, we added a one-hot representation of the current observation to the input
space. Let i be the index of the current observation, its one-hot representation is a zero-
vector with a single 1 in position i. For example if the observation map is indexed as
i = 2 out of 4 possible observations, its one-hot representation is v = [0, 1,0,0]. Let 0
be the space of one-hot representations of the current observation.

Second, we added a bag-of-words (BoW) representation of the past observations.
Given a sequence of past observations, its BoW representation is a vector v represent-
ing the multiset of the observations, i.e. v; is equal to the number of times observation
indexed by i is encountered in the history. For example, if the past observations were
(map,treasure,map) (in that order), indexed by I = [2,4,2], then their BoW repre-
sentation is 2 = [0,2,0,1]. Note that if the agent sees (treasure,map,map) (in that
order), then the representation of the history is still # = [0,2,0, 1]. Hence, a Q-learning
agent can distinguish bags of observations, but not the order in which they were per-
ceived. Sometimes BoW is a sufficient statistics for discriminating between cases, like
in document classification [ZI]E] Let A be the set of BoW representations of the past
observations.

Third, we extended the action set A with a reset action that mimics the behavior of
N in our ARM framework. This is resembling the way our algorithm interacts with
the environment. The reset action is a special one, because the agent is forced to reset
its past observation representation (i.e. set to the zero-vector) each time this action is
selected.

Finally, we can define the history-augmented deep Q function as the function fé :
$Sx O xH — RAIHL,

We implemented the deep network and the Q-learning algorithm in Tensorflow [1]].
Once the input space of the network is augmented with the history-based information,

4Qur intention is to provide a reasonable baseline, not to develop an excellent neural-network-based
solution for non-Markovian domains.
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Figure 3: Results for the Treasure-Map world (averaged over ten trials for ARM and
twenty trials for DQN). Episodes were 507 steps long for ARM and 1014 steps for
DQN. Average running-times per episode: ARM 24.9s; DQN: 10.4s.

standard RL frameworks can be exploited. In particular, we selected KerasRL [23]].
The neural network architecture is a feed-forward neural network, with three hidden
layers with fifty ReLU units each and a linear output layer. The Adam algorithm [[18]]
with a learning rate of 1073 is selected as weight-update rule.The epsilon-greedy policy
is used, with € = 0.1.

6.2 Treasure-Map World

The agent starts in one of the four corners of one of the five areas; one of these twenty
locations is randomly chosen. The default cost ¢ was set to -0.1 and the cost for reset-
ting was set to -10. The optimal value for this domain is 9.884 (computed by STORM
for the correct reward machine). We set Voyperr = 9. The performance of our framework
applied to the Treasure-Map world can be seen in Figure[3] On average, for ARM, there
were 835 membership-queries, and 509 counter-examples found during exploitation.

6.3 Office-Bot Domain

We now consider a slightly more complicated problem than the Treasure-map world.
In this domain, a robot must deliver the correct mail to a person in office A or office B,
or the robot must deliver a doughnut to one of those two offices. But these deliveries
must be initiated by a request from an office occupant. Mail is collected in the mail
room and doughnuts in the kitchen. What makes this a non-Markovian situation is that
the robot must remember who asked for an item and what item was asked for. The
office layout and the underlying reward machine are shown in Figure ]
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Figure 4: The Office-bot Domain.

Besides the four movement actions, there are actions ask (ask what occupant
wants), pickMailA (pickup mail for A), pickDonutA, dropItemA (drop item at A),
pickMailB, pickDonutB, and dropItemB.

The observation that the robot can make are mrA (mail request by A), drA (dough-
nut request by A), hmA (have mail for A), hdA (have doughnut for A), mrB (mail request
by B), drB (doughnut request by B), hmB (have mail for B), hdB (have doughnut for
B), del (item delivered).

The robot gets 1 reward point for making a request, 2 points for having one of the
two items in its possession, 3 points for delivering a doughnut to the correct person,
and 4 points for delivering mail to the correct person. We define “correct person” via
the labeling function by defining, for instance, A(dropItemA,ss) = del, where s4 is a
state representing A’s office (one of the two blue cells).

When the bot asks someone in an office what they want, the bot gets an answer
doughnut or mail with 50% chance each. Our framework cannot deal with stochastic
observations, so we encoded this behavior into the transition function: Whenever the
bot is in an office and asks, it transitions to one of the two cells of the office with 50%
probability. Then, if the bot is (ends up) in the back of the office, it is told to fetch mail,
else it is told to fetch a doughnut. For instance, for action ask, the labeling function
simply produces mrB (mail request by B) in the bottom red cell, and drB (doughnut
request by B) in the top red cell.

The robot starts in the middle of the hallway. The default cost ¢ was set to -0.1 and
the cost for resetting was set to -2. The optimal value for this domain is 0.383 (com-
puted by STORM for the correct reward machine). We set Voyper; = 0.3. The perfor-
mance of our framework applied to the Office-Bot domain can be seen in Figure[5] On
average, for ARM, there were 6060 membership-queries, and 152 counter-examples
found during exploitation. Performing more than 10000 episodes with DQN would
have taken too long.

The MRM learnt by ARM is actually more compact than the one provided to be
learned; the learnt one is like the MRM in Figure @b} but with nodes 5 and 6, resp., 7
and 8 merged. Angluin’s algorithm always finds the minimal machine.
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Figure 5: Results for the Office-Bot domain (averaged over ten trials for ARM and
five trials for DQN). Episodes were 63 steps long. Significantly fewer episodes were
run for DQN, because running-time is much longer (Avg. running-times per episode:
ARM: 0.091s; DQN: 0.462s).

6.4 The Cube Problem

This problem is added for more variety. The environment is a 5-by-5 grid without
obstacles, and with two cells where a is perceived and two cells where b is perceived.
The underlying reward model is the one shown in Figure [6] (top).

The agent always starts in the bottom right-hand corner. The default cost ¢ was set
to 0 and the cost for resetting was set to -1.

The optimal value for this problem is 0.1624 (computed by STORM for the correct
reward machine). We set Veyperr = 0.15. If Vyperr 1s set too high, then the agent will
keep on seeking counter-examples. Initially (for the first hypothesis RM), STORM
computes an optimal value below 0.15. Random exploration commences, a counter-
example is soon found and a correct reward machine is learnt.

The performance of our framework applied to the Cube problem can be seen in
Figure[7} On average, for ARM, there were 850 membership-queries, and 248 counter-
examples found during exploitation.

In this example (and in the Office-Bot domain), another benefit of the L* algorithm
can be seen: it produces the minimal machine (Figure[6] bottom), which usually makes
its meaning clearer, and produces exponentially smaller synchronized product MDPs.

7 CONCLUSION

We proposed a framework for learning and exploiting non-Markovian reward models,
represented as Mealy machines. Angluin’s L* algorithm is employed to learn Mealy
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Figure 6: The cube reward machine.
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Figure 7: Results for the Cube problem (averaged over five trials). Episodes were 75
steps long for ARM and 600 steps for DQN. Average running-times per episode: ARM:
1.1s; DQN: 45s.
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Reward Machines within a Markov Decision Process setting. The framework was im-
plemented and used for evaluation as a proof-of-concept.

Some useful theorems were proven, relying on existing theory of probabilistic
model-checking and automata learning theory. The main result is that, under reason-
able assumptions, we can guarantee that a system will eventually achieve a perfor-
mance level provided by a domain expert if that performance level is realistic/achievable
for that domain.

We found that in empirical evaluation, the framework learns the underlying MRM
of the applicable domain correctly, that is, after answering a finite number of mem-
bership queries as posed by the L* algorithm, within a finite time. And it significantly
outperforms a Deep Q-Network augmented to take history-based observations as input.
Moreover, the learnt MRM is minimal; least possible number of nodes.

As investigated in some of the related literature mentioned in the introduction, an
agent with a non-Markovian (reward) model is better equipped to avoid dangerous
or undesirable situation in some domains. A challenge is, how to safely learn non-
Markovian (reward) models in unsafe domains? Some work has been done on safe
learning/exploration [27, [13} [10]

We expect that more complex non-Markovian reward environments will require
intelligent exploration strategies. It will be interesting to investigate the exploration-
exploitation trade-off in the non-Markovian setting. And if an expert value is not
available, one could employ an e-greedy (or similar) strategy to allow for the agent
to observe counter-examples if they exist. This will be investigated in future work.
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